Newer
Older
#include "../material/DiffuseMaterial.h"
#include "../shape/CirclePlane.h"
#include "../tools/AxisAlignedBoundingBox.h"
#include "../tools/Mat4.h"
#include "../tools/Vec3.h"
void vec3_test() {
std::cout << "======================" << std::endl;
std::cout << " Testing Vec3 " << std::endl;
std::cout << "======================" << std::endl;
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
// do not tolerate any memory overhead
std::cout << " sizeof(Vec3) == 3 bytes: ";
assert(sizeof(util::Vec3) == 3 * sizeof(float));
std::cout << "passed." << std::endl;
}
{
std::cout << " constructor & index operator: ";
util::Vec3 a;
assert(a[0] == 0 && a[1] == 0 && a[2] == 0);
util::Vec3 b(1, 2, 3);
assert(b[0] == 1 && b[1] == 2 && b[2] == 3);
std::cout << "passed." << std::endl;
}
{
std::cout << " read-only access to const object: ";
const util::Vec3 a(1, 2, 3);
// the next line will throw a compiler error if there is no proper
// "operator[] const"
assert(a[1] == 2);
std::cout << "passed." << std::endl;
}
{
std::cout << " write access to a non-const object: ";
util::Vec3 a(1, 2, 3);
a[1] = 4;
assert(a[0] == 1 && a[1] == 4 && a[2] == 3);
std::cout << "passed." << std::endl;
}
{
std::cout << " comparison: ";
util::Vec3 a(1, 2, 3), b(1, 2, 3), c(1, 2, 9), d(4, 5, 6);
assert(a == b);
assert(a == a);
assert(a != c);
assert(b != d);
assert(!(a != b));
std::cout << "passed." << std::endl;
}
{
// should work out of the box when using std container (!)
std::cout << " assignment: ";
util::Vec3 a(1, 2, 3);
std::cout << a[0]
<< " "; // to make sure these values are not optimized away!
a = util::Vec3(4, 5, 6);
assert(a[0] == 4 && a[1] == 5 && a[2] == 6);
std::cout << "passed." << std::endl;
}
{
std::cout << " addition: ";
util::Vec3 a(1, 2, 3), b(4, 5, 6);
a += b;
assert(a == util::Vec3(5, 7, 9));
auto c = a + util::Vec3(1, 1, 1);
assert(c == util::Vec3(6, 8, 10));
util::Vec3 one(1, 1, 1), four(4, 4, 4);
one += one + one + one;
assert(one == four);
util::Vec3 x(0, 0, 0), y(1, 1, 1), z(2, 2, 2);
y += z;
assert(y == util::Vec3(3, 3, 3));
std::cout << "passed." << std::endl;
}
{
std::cout << " unary minus: ";
util::Vec3 a(1, 2, 3);
assert(-a == util::Vec3(-1, -2, -3));
std::cout << "passed." << std::endl;
}
{
std::cout << " dot product: ";
util::Vec3 a(1, 2, 3);
assert(dot(a, a) == 1 * 1 + 2 * 2 + 3 * 3);
std::cout << "passed." << std::endl;
}
{
// these tests will not compile if you forgot to declare
// some methods const
std::cout << " constness: ";
const util::Vec3 a(1, 2, 3);
assert(a[1] == 2);
assert(a == a);
assert(!(a != a));
assert(a + a == util::Vec3(2, 4, 6));
assert(-a == util::Vec3(-1, -2, -3));
assert(dot(a, a) == 1 * 1 + 2 * 2 + 3 * 3);
std::cout << "passed." << std::endl;
}
{
auto round_to_6 = [](float x) {
int temp = x * 1000000;
return temp / 1000000.0;
};
std::cout << " length and normalize: ";
const util::Vec3 a(1, 2, 3);
assert(a.length() == (float)sqrt(14));
assert(a.normalize()[0] == (float)(1 / sqrt(14)));
util::Vec3 b(2, 2, 1);
assert(b.length() == 3);
assert(b.normalize()[1] == (float)(2.0 / 3.0));
std::cout << "all util::Vec3 tests passed." << std::endl << std::endl;
void mat4_test() {
std::cout << "======================" << std::endl;
std::cout << " Testing Mat4 " << std::endl;
std::cout << "======================" << std::endl;
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{
// do not tolerate any memory overhead
std::cout << " sizeof(Mat4) == 16 bytes: ";
assert(sizeof(util::Mat4) == 16 * sizeof(float));
std::cout << "passed." << std::endl;
}
{
std::cout << " constructor & index operator: ";
util::Mat4 a;
assert(a == util::identity());
util::Mat4 b({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
assert((b[{0, 0}]) == 1 && (b[{1, 0}]) == 5 && (b[{3, 3}]) == 16);
std::cout << "passed." << std::endl;
}
{
std::cout << " read-only access to const object: ";
const util::Mat4 a(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
// the next line will throw a compiler error if there is no proper
// "operator[] const"
assert((a[{0, 2}]) == 3);
std::cout << "passed." << std::endl;
}
{
std::cout << " write access to a non-const object: ";
util::Mat4 a({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
a[{0, 2}] = 4;
// assert (a (0, 0) == 1 && a (0, 2) == 4 && a (2, 3) == 12);
std::cout << "passed." << std::endl;
}
{
std::cout << " comparison: ";
util::Mat4 a({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}),
b({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}),
c({1, 2, 9, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}),
d({4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19});
assert(a == b);
assert(a == a);
assert(a != c);
assert(b != d);
assert(!(a != b));
std::cout << "passed." << std::endl;
}
{
// should work out of the box when using std container (!)
std::cout << " assignment: ";
util::Mat4 a({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
std::cout << a[{0, 0}]
<< " "; // to make sure these values are not optimized away!
a = util::Mat4(
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19});
assert((a[{0, 0}]) == 4 && (a[{0, 1}]) == 5 && (a[{0, 2}]) == 6 &&
(a[{1, 2}]) == 10);
std::cout << "passed." << std::endl;
}
{
std::cout << " multiplication: ";
util::Mat4 a({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}),
b({4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19});
util::Mat4 c = a * b;
assert(c == util::Mat4({174, 196, 218, 240, 286, 324, 362, 400, 398,
452, 506, 560, 510, 580, 650, 720}));
auto d = a * util::identity();
assert(d == a);
util::Mat4 one({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}),
four({4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4});
one = one * one;
assert(one == four);
util::Mat4 x({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}),
y({2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2});
util::Mat4 z = x * y;
assert(z ==
util::Mat4({8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}));
std::cout << "passed." << std::endl;
}
{
std::cout << " transpose: ";
util::Mat4 a({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
util::Mat4 b = a.transpose();
assert(b == util::Mat4({1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8,
12, 16}));
util::Mat4 c({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
assert(c == c.transpose());
assert(util::identity() == util::identity().transpose());
std::cout << "passed." << std::endl;
}
{
// these tests will not compile if you forgot to declare
// some methods const
std::cout << " constness: ";
const util::Mat4 a(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
assert((a[{0, 1}]) == 2);
assert(a == a);
assert(!(a != a));
std::cout << "passed." << std::endl;
}
{
std::cout << " factory methods: ";
util::Mat4 s = util::scale(util::Vec3(2, 3, 4));
assert((s[{0, 0}]) == 2 && (s[{1, 1}]) == 3 && (s[{2, 2}]) == 4);
util::Mat4 t = util::translate(util::Vec3(1, -3, 4));
assert((t[{0, 3}]) == 1 && (t[{1, 3}]) == -3 && (t[{2, 3}]) == 4);
auto round_to_6 = [](float x) {
int temp = x * 1000000;
return temp / 1000000.0;
};
util::Mat4 r = util::rotate(util::Vec3(1, 0, 0), 40);
float r11 = round_to_6(r[{1, 1}]);
float r12 = round_to_6(r[{1, 2}]);
float r21 = round_to_6(r[{2, 1}]);
float r22 = round_to_6(r[{2, 2}]);
assert((r[{0, 0}]) == 1 && r11 == (float)0.766044 &&
r12 == (float)-0.642787 && r21 == (float)0.642787 &&
r22 == (float)0.766044);
std::cout << "passed." << std::endl;
}
{
std::cout << " transform: ";
auto round_to_5 = [](float x) {
int temp = x * 100000;
return temp / 100000.0;
};
util::Vec3 x = util::Vec3(2, 4, -5);
util::Mat4 rota = util::rotate(util::Vec3(1, 0, 0), 40);
util::Mat4 tran = util::translate(util::Vec3(1, 1, 1));
util::Vec3 y = rota.transformPoint(x);
assert(round_to_5(y[1]) == 6.27811 && round_to_5(y[2]) == -1.25907);
y = tran.transformPoint(x);
assert(round_to_5(y[1]) == 5 && round_to_5(y[2]) == -4);
y = tran.transformDir(x);
assert(round_to_5(y[1]) == 4 && round_to_5(y[2]) == -5);
std::cout << "passed." << std::endl;
}
{
std::cout << " position: ";
util::Mat4 x({0, 0, 0, 3, 0, 0, 1, 5, 1, 2, 3, -4, 2, 2, 2, 2});
util::Vec3 vec = x.position();
assert(vec[0] == 3 && vec[1] == 5 && vec[2] == -4);
std::cout << "all util::Mat4 tests passed." << std::endl << std::endl;
void ray_test() {
std::cout << "======================" << std::endl;
std::cout << " Testing Ray " << std::endl;
std::cout << "======================" << std::endl;
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
{
// do not tolerate any memory overhead
std::cout << " sizeof(Ray) == 36 bytes: ";
assert(sizeof(cam::Ray) == 36);
std::cout << "passed." << std::endl;
}
{
std::cout << " point_at and borders: ";
cam::Ray x(util::Vec3(1, 1, 1), util::Vec3(2, 0, 1), 0, 5000, false);
assert(x(1) == util::Vec3(3, 1, 2));
assert(x.in_range(400) && !x.in_range(-1) && !x.in_range(50000));
cam::Ray y(util::Vec3(2, 4, -3), util::Vec3(4, -3, 1), 0, 5000, false);
assert(y(5) == util::Vec3(22, -11, 2));
std::cout << "passed." << std::endl;
}
{
auto round_to_4 = [](float x) {
int temp = x * 10000;
return temp / 10000.0;
};
std::cout << " normalize: ";
cam::Ray x(util::Vec3(1, 1, 1), util::Vec3(0, 0, 5), 0, 5000, true);
assert(x(1) == util::Vec3(1, 1, 2));
cam::Ray y(util::Vec3(0, 0, 0), util::Vec3(3, 3, 3), 0, 5000, true);
assert(round_to_4(y(2)[0]) == 1.1547);
std::cout << "passed." << std::endl;
}
std::cout << "all cam::Ray tests passed." << std::endl << std::endl;
void axisalignedboundingbox_test() {
std::cout << "======================" << std::endl;
std::cout << " Testing AABB " << std::endl;
std::cout << "======================" << std::endl;
{
// do not tolerate any memory overhead
std::cout << " sizeof(AABB) == 24 bytes: ";
assert(sizeof(util::AxisAlignedBoundingBox));
std::cout << "passed." << std::endl;
}
{
std::cout << " contains: ";
util::AxisAlignedBoundingBox bb(util::Vec3(10, 10, 10),
util::Vec3(20, 20, 20));
assert(!bb.contains(util::Vec3(10, 6, 13)));
assert(!bb.contains(util::Vec3(22, 15, 13)));
assert(bb.contains(util::Vec3(10, 10, 20)));
assert(!bb.contains(util::Vec3(9, 19, 20)));
assert(!bb.contains(util::Vec3(16, 13, 25)));
assert(bb.contains(util::Vec3(15, 10, 18)));
assert(bb.contains(util::Vec3(10, 15, 20)));
assert(bb.contains(util::Vec3(10, 10, 10)));
// 2-dimensional AABB contain test
util::AxisAlignedBoundingBox bb0(util::Vec3(0, 10, 10),
util::Vec3(0, 20, 20));
assert(!bb0.contains(util::Vec3(10, 6, 13)));
assert(!bb0.contains(util::Vec3(22, 15, 13)));
assert(bb0.contains(util::Vec3(0, 10, 20)));
assert(bb0.contains(util::Vec3(0, 19, 20)));
assert(!bb0.contains(util::Vec3(0, 13, 25)));
assert(bb0.contains(util::Vec3(0, 10, 18)));
assert(!bb0.contains(util::Vec3(10, 15, 20)));
assert(bb0.contains(util::Vec3(0, 10, 10)));
// Infinity contain test
util::AxisAlignedBoundingBox infbb;
assert(infbb.contains(util::Vec3(1243, 1341, -3151)));
assert(infbb.contains(
util::Vec3(-std::numeric_limits<float>::infinity())));
assert(
infbb.contains(util::Vec3(std::numeric_limits<float>::infinity())));
assert(infbb.contains(util::Vec3(0)));
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
std::cout << "passed." << std::endl;
}
{
std::cout << " expand: ";
util::AxisAlignedBoundingBox bb(util::Vec3(10, 10, 10),
util::Vec3(20, 20, 20));
util::AxisAlignedBoundingBox bb2(util::Vec3(15, 15, 15),
util::Vec3(25, 25, 25));
auto result = bb + bb2;
assert(result.minBound() == util::Vec3(10, 10, 10));
assert(result.maxBound() == util::Vec3(25, 25, 25));
util::AxisAlignedBoundingBox bb3(util::Vec3(10, 10, 10),
util::Vec3(20, 20, 20));
util::AxisAlignedBoundingBox bb4(util::Vec3(15, 9, -1),
util::Vec3(18, 10, 25));
auto result2 = bb3 + bb4;
assert(result2.minBound() == util::Vec3(10, 9, -1));
assert(result2.maxBound() == util::Vec3(20, 20, 25));
util::AxisAlignedBoundingBox bb5(util::Vec3(-45, 40, 0),
util::Vec3(0, 40, 20));
util::AxisAlignedBoundingBox bb6(util::Vec3(-70, -5, -1),
util::Vec3(-60, 90, 0));
auto result3 = bb5 + bb6;
assert(result3.minBound() == util::Vec3(-70, -5, -1));
assert(result3.maxBound() == util::Vec3(0, 90, 20));
// Infinity expanse test
util::AxisAlignedBoundingBox infbb;
auto result4 = infbb + result3 + result2 + result;
assert(result4.maxBound() == infbb.maxBound() &&
result4.minBound() == infbb.minBound());
std::cout << "passed." << std::endl;
}
{
std::cout << " intersect: ";
util::AxisAlignedBoundingBox bb(util::Vec3(10, 10, 10),
util::Vec3(20, 20, 20));
assert(bb.intersects(cam::Ray(util::Vec3(1, 10, 10),
util::Vec3(1, 0.5, 0.3), 0, 100, false)));
assert(bb.intersects(cam::Ray(
util::Vec3(11, 11, 11), util::Vec3(0.5, 0.3, 0.5), 0, 100, false)));
assert(!bb.intersects(cam::Ray(
util::Vec3(9, 9, 9), util::Vec3(1, -0.4, -0.5), 0, 100, false)));
assert(!bb.intersects(cam::Ray(
util::Vec3(21, 21, 21), util::Vec3(1, -0.4, -0.5), 0, 100, false)));
assert(
bb.intersects(cam::Ray(util::Vec3(21, 21, 21),
util::Vec3(-1, -0.4, -0.5), 0, 100, false)));
assert(bb.intersects(cam::Ray(util::Vec3(21, 21, 21),
util::Vec3(-1, -1, -2), 0, 100, false)));
// 2-dimensional AABB intersect test
util::AxisAlignedBoundingBox bb0(util::Vec3(0, 10, 10),
util::Vec3(0, 20, 20));
assert(bb0.intersects(cam::Ray(util::Vec3(21, 10, 11),
util::Vec3(-1, 0, 0), 0, 100, false)));
assert(bb0.intersects(cam::Ray(util::Vec3(-1, 10, 9),
util::Vec3(1, 0, 2), 0, 100, false)));
assert(!bb0.intersects(cam::Ray(
util::Vec3(0, 21, 21), util::Vec3(-1, -2, -2), 0, 100, false)));
assert(bb0.intersects(cam::Ray(util::Vec3(-1, 18, 18),
util::Vec3(1, -2, 2), 0, 100, false)));
// Infinity intersection test
util::AxisAlignedBoundingBox infbb;
assert(infbb.intersects(cam::Ray(
util::Vec3(21341, -13421, 0), util::Vec3(-1315, -11324, 2135), 0,
std::numeric_limits<float>::infinity(), false)));
std::cout << "passed." << std::endl;
}
std::cout << "all util::AxisAlignedBoundingBox tests passed." << std::endl
<< std::endl;
}
void shape_test() {
std::cout << "======================" << std::endl;
std::cout << " Testing Shapes " << std::endl;
std::cout << "======================" << std::endl;
auto red_material =
std::make_shared<material::DiffuseMaterial>(util::Vec3(1, 0, 0));
{
std::cout << " CirclePlane: ";
shapes::CirclePlane circ_plane(5.0, red_material);
cam::Ray direct_ray(util::Vec3(0, 3, 0), util::Vec3(0.3, -1, 0.2), 0,
100, false);
cam::Ray bounding_ray(util::Vec3(4.6, -1, 4), util::Vec3(-0.1, 1, 0.5),
0, 100, false);
cam::Ray missing_ray(util::Vec3(4.6, -1, 4), util::Vec3(-0.1, -1, 0.5),
0, 100, false);
assert(circ_plane.bounds().intersects(direct_ray));
assert(circ_plane.bounds().intersects(bounding_ray));
assert(!circ_plane.bounds().intersects(missing_ray));
assert(circ_plane.intersect(direct_ray) != nullptr);
assert(circ_plane.intersect(bounding_ray) == nullptr);
assert(circ_plane.intersect(missing_ray) == nullptr);
std::cout << "passed." << std::endl;
}
{
std::cout << " Sphere: ";
shapes::Sphere sphere(5.0, red_material);
cam::Ray direct_ray(util::Vec3(3, 6, 3), util::Vec3(-0.3, -2, 0.2), 0,
100, false);
cam::Ray bounding_ray(util::Vec3(4.5, 5.3, 4),
util::Vec3(-0.5, -0.5, 0.4), 0, 100, false);
cam::Ray missing_ray(util::Vec3(5.5, 5.5, 5.5), util::Vec3(1, 1, 1), 0,
100, false);
assert(sphere.bounds().intersects(direct_ray));
assert(sphere.bounds().intersects(bounding_ray));
assert(!sphere.bounds().intersects(missing_ray));
assert(sphere.intersect(direct_ray) != nullptr);
assert(sphere.intersect(bounding_ray) == nullptr);
assert(sphere.intersect(missing_ray) == nullptr);
std::cout << "passed." << std::endl;
}
std::cout << "all shapes::Shape tests passed." << std::endl;
}