Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
CV_plant_leaf_diseases
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
s87425
CV_plant_leaf_diseases
Commits
4aa4eb49
Commit
4aa4eb49
authored
1 year ago
by
s87425
Browse files
Options
Downloads
Patches
Plain Diff
Autoencoder fixed
parent
2d98304b
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
autoencoder.py
+94
-14
94 additions, 14 deletions
autoencoder.py
with
94 additions
and
14 deletions
autoencoder.py
+
94
−
14
View file @
4aa4eb49
import
torch
import
torch
import
torchvision
from
torch
import
nn
from
torch
import
nn
from
torch.autograd
import
Variable
from
torch.utils.data
import
DataLoader
,
random_split
,
Dataset
from
torch.utils.data
import
DataLoader
from
torchvision
import
transforms
from
torchvision
import
transforms
from
torchvision.utils
import
save_image
from
torchvision.datasets
import
ImageFolder
from
torchvision.datasets
import
ImageFolder
import
os
import
os
from
sklearn
import
svm
from
sklearn.metrics
import
accuracy_score
from
sklearn.utils.class_weight
import
compute_class_weight
import
numpy
as
np
if
not
os
.
path
.
exists
(
'
./dc_img
'
):
if
not
os
.
path
.
exists
(
'
./dc_img
'
):
os
.
mkdir
(
'
./dc_img
'
)
os
.
mkdir
(
'
./dc_img
'
)
...
@@ -17,6 +18,35 @@ def to_img(x):
...
@@ -17,6 +18,35 @@ def to_img(x):
x
=
x
.
view
(
x
.
size
(
0
),
3
,
256
,
256
)
# Anpassung der Form für RGB-Bilder
x
=
x
.
view
(
x
.
size
(
0
),
3
,
256
,
256
)
# Anpassung der Form für RGB-Bilder
return
x
return
x
class
LimitedImageFolder
(
Dataset
):
def
__init__
(
self
,
root
,
transform
=
None
,
limit_per_class
=
10000
):
self
.
root
=
root
self
.
transform
=
transform
self
.
limit_per_class
=
limit_per_class
self
.
image_folder
=
ImageFolder
(
root
=
self
.
root
,
transform
=
self
.
transform
)
self
.
class_indices
=
self
.
_limit_per_class
()
def
_limit_per_class
(
self
):
class_indices
=
{}
for
i
,
(
image_path
,
class_label
)
in
enumerate
(
self
.
image_folder
.
imgs
):
if
class_label
not
in
class_indices
:
class_indices
[
class_label
]
=
[]
if
len
(
class_indices
[
class_label
])
<
self
.
limit_per_class
:
class_indices
[
class_label
].
append
(
i
)
return
class_indices
def
__getitem__
(
self
,
index
):
original_index
=
self
.
class_indices
[
index
//
self
.
limit_per_class
][
index
%
self
.
limit_per_class
]
return
self
.
image_folder
[
original_index
]
def
__len__
(
self
):
return
len
(
self
.
class_indices
)
*
self
.
limit_per_class
num_epochs
=
100
num_epochs
=
100
batch_size
=
128
batch_size
=
128
learning_rate
=
1e-3
learning_rate
=
1e-3
...
@@ -29,8 +59,16 @@ img_transform = transforms.Compose([
...
@@ -29,8 +59,16 @@ img_transform = transforms.Compose([
# Anpassung des Datasets auf ImageFolder
# Anpassung des Datasets auf ImageFolder
data_dir
=
'
Plant_leave_diseases_dataset_without_augmentation
'
# Setze das Verzeichnis deines Bild-Datasets hier ein
data_dir
=
'
Plant_leave_diseases_dataset_without_augmentation
'
# Setze das Verzeichnis deines Bild-Datasets hier ein
dataset
=
ImageFolder
(
root
=
data_dir
,
transform
=
img_transform
)
dataset
=
LimitedImageFolder
(
root
=
data_dir
,
transform
=
img_transform
,
limit_per_class
=
10
)
dataloader
=
DataLoader
(
dataset
,
batch_size
=
batch_size
,
shuffle
=
True
)
# Aufteilung in Trainings- und Testset
train_size
=
int
(
0.8
*
len
(
dataset
))
test_size
=
len
(
dataset
)
-
train_size
train_dataset
,
test_dataset
=
random_split
(
dataset
,
[
train_size
,
test_size
])
# DataLoader für Trainings- und Testset
train_dataloader
=
DataLoader
(
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
)
test_dataloader
=
DataLoader
(
test_dataset
,
batch_size
=
batch_size
,
shuffle
=
False
)
class
autoencoder
(
nn
.
Module
):
class
autoencoder
(
nn
.
Module
):
def
__init__
(
self
):
def
__init__
(
self
):
...
@@ -53,6 +91,7 @@ class autoencoder(nn.Module):
...
@@ -53,6 +91,7 @@ class autoencoder(nn.Module):
)
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
#print("Hallo")
x
=
self
.
encoder
(
x
)
x
=
self
.
encoder
(
x
)
x
=
self
.
decoder
(
x
)
x
=
self
.
decoder
(
x
)
return
x
return
x
...
@@ -65,9 +104,9 @@ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=
...
@@ -65,9 +104,9 @@ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=
for
epoch
in
range
(
num_epochs
):
for
epoch
in
range
(
num_epochs
):
total_loss
=
0
total_loss
=
0
for
data
in
dataloader
:
for
data
in
train_
dataloader
:
img
,
_
=
data
img
,
labels
=
data
# Achtung: Hier gehe ich davon aus, dass deine DataLoader die Labels zurückgeben
img
=
Variable
(
img
)
.
to
(
device
)
img
=
img
.
to
(
device
)
output
=
model
(
img
)
output
=
model
(
img
)
loss
=
criterion
(
output
,
img
)
loss
=
criterion
(
output
,
img
)
optimizer
.
zero_grad
()
optimizer
.
zero_grad
()
...
@@ -75,9 +114,50 @@ for epoch in range(num_epochs):
...
@@ -75,9 +114,50 @@ for epoch in range(num_epochs):
optimizer
.
step
()
optimizer
.
step
()
total_loss
+=
loss
.
data
total_loss
+=
loss
.
data
print
(
'
epoch [{}/{}], loss:{:.4f}
'
.
format
(
epoch
+
1
,
num_epochs
,
total_loss
))
print
(
'
Autoencoder: epoch [{}/{}], loss:{:.4f}
'
.
format
(
epoch
+
1
,
num_epochs
,
total_loss
))
if
epoch
%
10
==
0
:
pic
=
to_img
(
output
.
cpu
().
data
)
# Wende den Autoencoder auf den Trainings- und Testdatensatz an und extrahiere den Latent-Space
save_image
(
pic
,
'
./dc_img/image_{}.png
'
.
format
(
epoch
))
model
.
eval
()
with
torch
.
no_grad
():
train_latent
=
[]
train_labels
=
[]
for
data
in
train_dataloader
:
img
,
labels
=
data
img
=
img
.
to
(
device
)
latent
=
model
.
encoder
(
img
)
train_latent
.
append
(
latent
.
cpu
().
numpy
())
train_labels
.
extend
(
labels
.
numpy
())
test_latent
=
[]
test_labels
=
[]
for
data
in
test_dataloader
:
img
,
labels
=
data
img
=
img
.
to
(
device
)
latent
=
model
.
encoder
(
img
)
test_latent
.
append
(
latent
.
cpu
().
numpy
())
test_labels
.
extend
(
labels
.
numpy
())
unique_classes
=
torch
.
unique
(
torch
.
tensor
(
train_labels
))
# Konvertiere Latent-Space-Daten in Tensoren
train_latent
=
torch
.
cat
([
torch
.
from_numpy
(
latent
)
for
latent
in
train_latent
],
dim
=
0
)
test_latent
=
torch
.
cat
([
torch
.
from_numpy
(
latent
)
for
latent
in
test_latent
],
dim
=
0
)
# Flatten Sie die Latent-Space-Daten (optional)
train_latent
=
train_latent
.
view
(
train_latent
.
size
(
0
),
-
1
)
test_latent
=
test_latent
.
view
(
test_latent
.
size
(
0
),
-
1
)
# Berechne die Klassen-Gewichte basierend auf der Anzahl der Bilder pro Klasse
class_weights
=
compute_class_weight
(
'
balanced
'
,
classes
=
np
.
unique
(
train_labels
),
y
=
train_labels
)
# Konvertiere die Gewichte in ein Dictionary
class_weight_dict
=
{
class_idx
:
weight
for
class_idx
,
weight
in
enumerate
(
class_weights
)}
# Trainiere eine SVM auf den Latent-Space-Daten
svm_classifier
=
svm
.
SVC
(
class_weight
=
class_weight_dict
)
svm_classifier
.
fit
(
train_latent
,
train_labels
)
# Klassifiziere den Testdatensatz mit der trainierten SVM
predicted_labels
=
svm_classifier
.
predict
(
test_latent
)
torch
.
save
(
model
.
state_dict
(),
'
./conv_autoencoder.pth
'
)
# Berechne die Genauigkeit
accuracy
=
accuracy_score
(
test_labels
,
predicted_labels
)
print
(
f
'
SVM Accuracy:
{
accuracy
}
'
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment